Specification of Thermoelectric Module

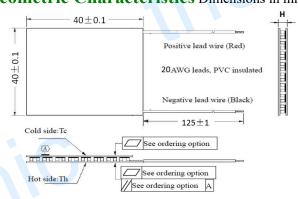
TEC1-19906

Description

The 199 couples, 40 mm × 40 mm size module which is made of selected high performance ingot to achieve superior cooling performance and greater delta T up to 70 °C, designed for superior cooling and heating up to 100 °C applications. If higher operation or processing temperature is required, please specify, we can design and manufacture the custom made module according to your special requirements.

Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance


Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Performance Specification Sheet

Th(°C)	27	50	Hot side temperature at environment: dry air, N ₂
DT _{max} (°C)	70	79	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side
U _{max} (Voltage)	24.74	26.66	Voltage applied to the module at DT _{max}
I _{max(} amps)	6.1	6.1	DC current through the modules at DT _{max}
Q _{Cmax} (Watts)	94.9	103.8	Cooling capacity at cold side of the module under DT=0 °C
AC resistance(ohms)	3.1	3.35	The module resistance is tested under AC
Tolerance (%)	± 10		For thermal and electricity parameters

Geometric Characteristics Dimensions in millimeters

Manufacturing Options

A. Solder:

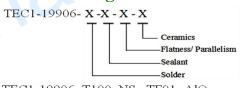
- 1. T100 BiSn (Tmelt=138°C)
- 2. T200: CuSn (Tmelt = 227 $^{\circ}$ C)

B. Sealant:

- 1. NS: No sealing (Standard)
- 2. SS: Silicone sealant
- 3. EPS: Epoxy sealant
- 4. Customer specify sealing other than above

C. Ceramics:

- 1. Alumina (Al₂O₃,white 96%)
- 2. Aluminum Nitride (AlN)


D. Ceramics Surface Options:

- 1. Blank ceramics (not metallized)
- 2. Metallized (Au plating)

Ordering Option

Suffix	Thickness	Flatness/	Lead wire length(mm)		
	(mm)	Parallelism (mm)	Standard/Optional length		
TF	$0:3.8 \pm 0.1$	0:0.05 / 0.05	125±1/Specify		
TF	$1:3.8 \pm 0.05$	1:0.025 / 0.025	125±1/Specify		
TF	2:3.8±0.025	2:0.015 / 0.015	125±1/Specify		
Eg. TF01: Thickness 3.8 ± 0.1 (mm) and Flatness $0.025 / 0.025$ (mm)					

Naming for the Module

TEC1-19906-T100-NS-TF01-A10

T100: BiSn (Tmelt=138°C)

NS: No sealing AIO: Alumina white 96%

TF01: Thickness ± 0.1 (mm) and Flatness/Parallelism 0.025/0.025 (mm)

10

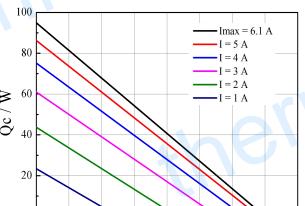
20

30

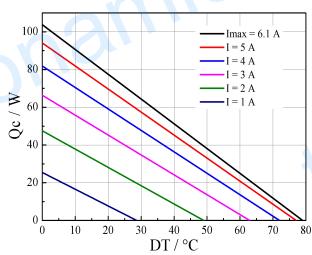
DT / °C

50

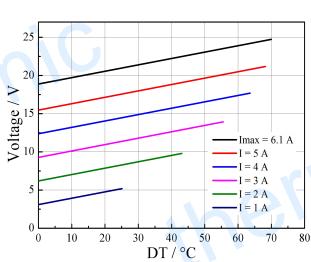
60

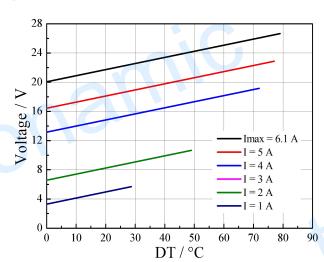

70

80

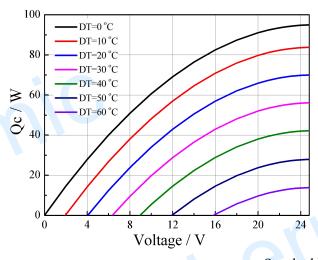

Specification of Thermoelectric Module

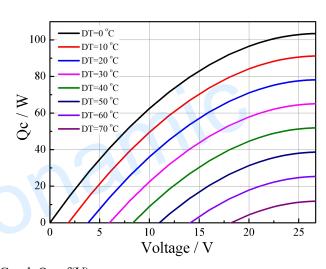
TEC1-19906



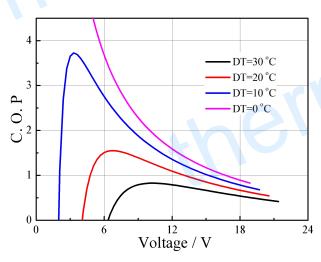


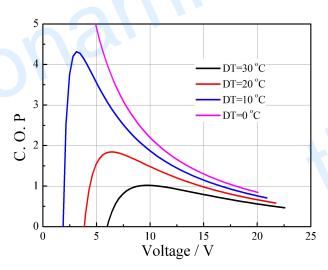
Performance Curves at Th=50 °C



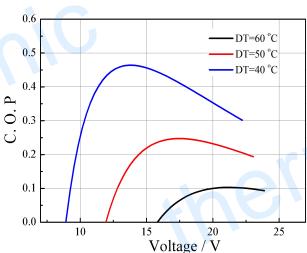

Standard Performance Graph Qc= f(DT)

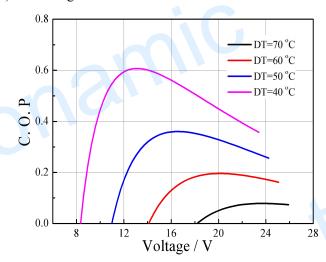
Standard Performance Graph $V=f(\Delta T)$


Standard Performance Graph Qc = f(V)


Specification of Thermoelectric Module

TEC1-19906


Performance Curves at Th=27 °C


Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V × I).

Operation Cautions

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Storage module below 100 °C
- Operation below I_{max} or V_{max}
- Work under DC